Next-generation sequencing reveals deep intronic cryptic ABCC8 and HADH splicing founder mutations causing hyperinsulinism by pseudoexon activation.
نویسندگان
چکیده
Next-generation sequencing (NGS) enables analysis of the human genome on a scale previously unachievable by Sanger sequencing. Exome sequencing of the coding regions and conserved splice sites has been very successful in the identification of disease-causing mutations, and targeting of these regions has extended clinical diagnostic testing from analysis of fewer than ten genes per phenotype to more than 100. Noncoding mutations have been less extensively studied despite evidence from mRNA analysis for the existence of deep intronic mutations in >20 genes. We investigated individuals with hyperinsulinaemic hypoglycaemia and biochemical or genetic evidence to suggest noncoding mutations by using NGS to analyze the entire genomic regions of ABCC8 (117 kb) and HADH (94 kb) from overlapping ~10 kb PCR amplicons. Two deep intronic mutations, c.1333-1013A>G in ABCC8 and c.636+471G>T HADH, were identified. Both are predicted to create a cryptic splice donor site and an out-of-frame pseudoexon. Sequence analysis of mRNA from affected individuals' fibroblasts or lymphoblastoid cells confirmed mutant transcripts with pseudoexon inclusion and premature termination codons. Testing of additional individuals showed that these are founder mutations in the Irish and Turkish populations, accounting for 14% of focal hyperinsulinism cases and 32% of subjects with HADH mutations in our cohort. The identification of deep intronic mutations has previously focused on the detection of aberrant mRNA transcripts in a subset of disorders for which RNA is readily obtained from the target tissue or ectopically expressed at sufficient levels. Our approach of using NGS to analyze the entire genomic DNA sequence is applicable to any disease.
منابع مشابه
Deep intronic GPR143 mutation in a Japanese family with ocular albinism
Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 int...
متن کاملThe Deep Intronic c.903+469T>C Mutation in the MTRR Gene Creates an SF2/ASF Binding Exonic Splicing Enhancer, Which Leads to Pseudoexon Activation and Causes the cblE Type of Homocystinuria
Deep intronic mutations are often ignored as possible causes of human diseases. A deep intronic mutation in the MTRR gene, c.903+469T>C, is the most frequent mutation causing the cblE type of homocystinuria. It is well known to be associated with pre-mRNA mis-splicing, resulting in pseudoexon inclusion; however, the pathological mechanism remains unknown. We used minigenes to demonstrate that t...
متن کاملA Deep Intronic HADH Splicing Mutation (c.636+471G>T) in a Congenital Hyperinsulinemic Hypoglycemia Case: Long Term Clinical Course
Unlike other congenital fatty acid oxidation defects, short-chain L-3-hydroxyacyl-CoA (SCHAD, HADH) deficiency is characterised by hypoglycemia with hyperinsulinism in the neonatal or infancy periods. The long-term and detailed clinical progression of the disease is largely unknown with almost 40 patients reported and only a few patients described clinically. We present clinical and laboratory ...
متن کاملUncovering the molecular pathogenesis of congenital hyperinsulinism by panel gene sequencing in 32 Chinese patients
Congenital hyperinsulinism (CHI) has been mostly associated with mutations in seven major genes. We retrospectively reviewed a cohort of 32 patients with CHI. Extensive mutational analysis (ABCC8,KCNJ11,GCK,GLUD1,HADH,HNF4A, and UCP2) was performed on Ion torrent platform, which could analyze hundreds of genes simultaneously with ultrahigh-multiplex PCR using up to 6144 primer pairs in a single...
متن کاملA Case Series: Congenital Hyperinsulinism
INTRODUCTION Congenital hyperinsulinism is a rare inherited disease caused by mutations in genes responsible for β-cell's function in glucose hemostasis leading to profound and recurrent hypoglycemia. The incidence of the disease is about 1 in 50000 newborns. Mutations in at least 8 genes have been reported to cause congenital hyperinsulinism. Mutations in ABCC8 gene are the most common cause o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of human genetics
دوره 92 1 شماره
صفحات -
تاریخ انتشار 2013